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RATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE 2605 

BEHAVIOR OF VORTEX SYSTEM BEHIND CRUCIFORM WINGS 

MOTIONS OF FULLY ROLLED-UP VORTICES 

By Alvin H. Sacks 

SUMMARY 

The motions of four fully rolled-up vortices representing the vortex 
system trailing behind cruciform wings are studied by theoretical and 
visual-flow methods. The analysis applies throughout the Mach number 
range. 

Equations are developed for the three-dimensional paths traced by 
the vortices behind a cruciform wing banked 45°, and calculations are 
made of the distance behind the wing at which the upper two vortices 
pass through the lower two. It is found that this "leapfrog" distance 
depends upon the lift coefficient, aspect ratio, and span loading of the 
cruciform wing, and that for low-aspect-ratio cruciform wings leapfrog- 
ging may occur within two chord lengths of the trailing edges. 

The various types of vortex motion to be expected throughout the 
angle-of-attack range are considered in some detail, and the interaction 
of the two vortex sheets shed from the cruciform wing is taken into 
account. Results of some water-tank studies are also presented and 
compared with the theory. 

INTRODUCTION 

The downwash behind plane wings has been studied theoretically by a 
number of authors and considerable attention has been given to the 
rolling up of the trailing vortex sheet. The analysis of Kaden 
(reference 1) predicted the distance behind the wing at which the sheet 
may be considered to be fully rolled up into two trailing vortices, and 
this work was later used (in reference 2) to demonstrate the usefulness 
of the single horseshoe-vortex approximation for the calculation of the 
downwash behind wings of low aspect ratio. Since at the present time 
cruciform configurations are largely confined to wings of low aspect 
ratio, the rolling up of the trailing vortex sheets is again of major 
concern, and the behavior of the fully rolled-up vortices is again of 
considerable interest. 
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While in the case of the plane wing the vortex sheet became rolled 
up into a vortex pair which simply moved downward at a uniform speed at 
great distances behind the wing, the analogous problem for cruciform 
wings is necessarily more complicated. Instead of the two rolled-up 
vortices, there are now presumably four (one from each wing panel) and 
their induced effects upon one another are such as to produce quite 
intricate paths of motion. The downwash field, of course, may therefore 
become extremely involved. This report is concerned with a study of the 
motions of the four rolled-up vortices and their effect on the downwash 
behind cruciform wings. 

SYMBOLS 

A 

b 

c 

CL 

CZ 

d 

dT 

L 

L' 

M 

4 

Q2 

aspect ratio  — 

span of one wing (2s0) 

root chord 

lift coefficient of cruciform wing ( — 

lift coefficient of plane wing ( — 
.qs, 

section lift coefficient for plane wing 

distance behind wing trailing edge 

distance behind wing trailing edge where four rolled-up vortices 
are collinear (leapfrog distance) 

constant of the motion related to distance between centers of 
gravity of two vortex systems (y1 + y2) 

parameter which depends on initial vortex positions 

1  

Zflfi -22 
f \   f 

lift of cruciform wing 

lift of plane wing 

free-stream Mach number 

free-stream dynamic pressure 
o L 

^2   42(k-G) 
parameter used for periodic motion      

UG 
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Q    parameter used for aperiodic motion (-Q ) 

R2     f5G 

S area of one wing 

s local semispan of one wing 

sQ maximum semispan of one wing 

s' semispan of rolled-up vortices from one wing 

t time 

U free-stream velocity 

v velocity of vortex center in y direction 

w velocity of vortex center in z direction 

x,y, z right-hand orthogonal coordinates with x axis in stream 
direction 

y0, z0 initial values of j1    and z± 

zi>2      vertical distance between vortices 1 and 2 
(See sketch on page 9.) 

a     angle of attack of cruciform wing axis 

a*    angle of attack of one wing 

ß     angle of sideslip of one wing 

/r 
7     ratio of vortex strengths ( _L 

T    circulation (positive counterclockwise) 

p    mass density 

Subscripts 1, 2,   3, and 4 refer to vortex number.  (See sketch on page 5.) 
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GENERAL ANALYSIS 

The phenomenon of the rolling up of the vortex sheet behind plane 
wings was discussed as early as 1907 by Lanchester (reference 3) and has 
since been the subject of a large number of investigations. As a result 
of such investigations, it has been found (reference 2) that, whereas 
the vortex sheet behind wings of high aspect ratio may be considered to 
remain flat at the tail location, a good approximation to the downwash 
several chord lengths behind wings of low aspect ratio is often obtained 
by considering the sheet to be fully rolled up into two trailing vortices. 
In the case of the cruciform wing, as in the case of the plane wing, the 
rate of rolling up of the vortex sheets will depend upon the aspect ratio 
of each wing. It should therefore be possible to obtain a reasonably 
good approximation to the downwash field behind low-aspect-ratio cruci- 
form wings by considering the vortex sheets to be fully rolled up; that 
is, by replacing the two vortex sheets by four discrete vortices. It is 
with this simplified model of the physical problem that the analysis of 
this report is concerned at the outset. Subsequently, it will be seen 
that the theory can be modified to provide a more accurate representation 
of the actual flow field. 

With low-aspect-ratio wings in source-free flow the linearized dif- 
ferential equation for the perturbation velocity potential cp 

(l-M2)^  +9+9=0 (1) v    ' xx   yy   zz 

can be satisfactorily approximated at all Mach numbers by the two- 
dimensional equation 

<Pyy + ^zz = ° (2) 

since (l-M2) cp^ is much smaller than <Pyy and 9ZZ if vl-M2 A is 
small.  (See references k  and 5.)  Therefore, the problem of the motions 
of the four rolled-up vortices can first be treated by lateral strip 
theory as a two-dimensional problem in planes perpendicular to the 
flight direction. For the cruciform wing at ^5° angle of bank, where a 
vertical plane of symmetry is present, the problem is thus reduced to 
that of the motion of two pairs of vortices with a common axis. This 
problem was first attacked by Love (reference 6) and later by Hicks 
(reference 7)> both in connection with the analogous three-dimensional 
problem of the motion of vortex rings. Unfortunately, neither of these 
authors worked completely the problem of interest here, the former being 
concerned only with the relative paths of the vortex pairs about each 
other, whereas the latter was concerned chiefly with the actual problem 
of the vortex rings. 

Since this paper is concerned with the three-dimensional paths of 
the four rolled-up vortices behind the wing, the paths in transverse 
planes will first be determined, and will then be related to the elapsed 
time or the distance the wing has traveled in the flight direction. 
The analysis will be confined to the case of k^° bank. 
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Determination of Vortex Paths 

Relative motions in transverse plane.- The motion of■any system of 
two-dimensional vortex filaments is determined by the induced velocity of 
each vortex due to all the other vortices of the system. It is shown in 
reference 8 that the induced velocity of any particular filament can be 
obtained from the function 

w = ^zrmrn log (£ffl_y 

where m<n and £m = ym + izm. That is, if one writes 

-W = « + i\|r 

(3) 

CO 
then \|r is a constant of the motion and is analogous to the stream 
function in giving the components of the velocity of the particular 
vortex. Thus, the path of each vortex can be determined from equa- 
tions (3) and (k),  provided that the motion of one vortex determines the 
motions of all the other vortices of the system.  (Such is the case, for 
instance, where all the vortices but one are images of the one.) In the 
present problem, since only two of the four vortices are images, equa- 
tions (3) and (k)  are not sufficient to describe completely the motion of 
the system. However, these equations will be useful in determining the 
paths of two of the vortices relative to the other two. It will be seen 
later that this information is of considerable interest. 

For the cruciform wing banked 45°, the simplified vortex system as 
viewed in the y,z plane consists of two pairs of two-dimensional 
vortices having a common plane of symmetry as shown in the sketch. 
It is apparent from the symmetry of 
the configuration that 

ri ■ "*V ra = -ra 

Further, if each wing of the cruciform 
can be considered as a plane wing in 
sideslip (as was demonstrated in 
reference 9 for the calculation of 
load distribution) it follows that 

ri = -r3; r2 = -r4 

since the vortex system far behind a 
plane lifting wing must consist of two 
equal (and opposite) vortices, 
although their positions will depend 
upon the angle of sideslip while 
their strength will depend upon the 

C 7> 
fi 

C D 
■*- y 

plane of 
symmetry 
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lift. On this basis, it can be concluded that 

rx  = r2= -r3= -r4 = r 

Actually, since the vortex sheets trailing behind the cruciform wing 
must influence one another during the rolling-up process itself, the 
assumption that the wings act independently is not strictly applicable 
to considerations of the wake as in the present problem. However, this 
complication will be deferred to a later section and the analysis will 
first be developed on the basis of four vortices of equal strength. 
Hence, from this point on, the subscripts will be omitted in reference 
to the vortex strengths which will be referred to simply as plus or 
minus T. 

When the directions of rotation of the four vortices are taken into 
consideration, equation (3) can be written for the present problem as: 

ir2 r 
W =  5   lOg (£l-£2) - lOg (C2-^3) + lOg (^3-U) 
W 

log (5i-54) - log'fEjL-Sa) - log (&a-C4) (5) 

Noting further that £4 and £3 are simply the_negative complex conju- 
gates of d and iz,  that is £4 = -\x,  t,Q = -\£,  equation (5) can be 
expressed as 

W = log (^-y - log (ca +1£) + log (lx-l2)- 

log (5i + Ii) - log (Ci + \z)  -  log (Ca + lx) 

(6i-Sa)(Si-Sg) log 
.(Sa+yfSi+SJCCi+CaiCCa+fi)  J (6) 

Due to the symmetry (see sketch on page 5), the vortex system may 
also be considered as two groups of vortices with equal and opposite total 
circulation (one group on either side of the plane of symmetry). For 
such a pair of groups, the centers of gravity1 of the two groups must 
remain a fixed distance apart.  (See reference 10.)  In other words, 
the center of gravity of each group must move parallel to the plane of 
symmetry. Since here the strengths are equal in magnitude, this may be 
stated as 

yc-g- ZTI 
syirt _ r(y!+yg) _ yi+yg    t 

2r 
= i = constant (7) 

lrnae center of gravity of a group of vortices is defined as the center 
of gravity of a similar field of point masses, the mass of each being 
proportional to the strength of the corresponding vortex. Negative 
masses correspond to negative circulations.  
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With this information, equation (6) can be expressed in terms of the 
coordinates y and z and simplified to      v 

w = *f log ((yi-y2)
2 + (i.-*ef \ (8) 

Now, since W is purely imaginary, equation (k)  is simply 

At this point, a moving coordinate system is introduced such that one 
pair of vortices always lies on the y axis. This is done by a change 
of variable 

Z1,S = Zl   ~  Z2 (10) 

Now, noting that    y2 = f - ya,  equation (9) becomes 

* = ^ log 
(2yi-f)a  + Zl.a

2 

Uy.Cf-y.Kf2-^/) J (11) 

Setting t of equation (ll) equal to a constant then yields an equation 
for the paths of vortices 1 and 2 relative to each other. Thus, 

(2yi-f)g + 31, ag      .  . —-—- t,/'  <—- = constant 

or 

2^-1 +   &l 
f V f 1 + Zl,g 

constant = G (12) 

determines the relative paths of vortices 1 and 2 (and also 3 and %)  once 
the value of the constant G is determined. 

In order to evaluate G of equation (12), one must determine the 
initial positions of the four vortices. It must be realized, of course, 
that initially (i.e., at the trailing edges of the cruciform wings) there 
are not four"discrete vortices but a cruciform system of vortex sheets. 
The immediate problem, then, is to replace these sheets by four vortices 
properly located in the £(or y,z) plane. For the present, it will 
suffice to observe that the initial locations of the four vortices must • 
lie on the straight lines formed by the trailing edges of the wings. 
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Thus, for 45° bank, 

zl,2 = 7i + y2 = 
f when yx = y0 (13) 

where the subscript o refers to the initial value of yx. The actual 
determination of y0 will be deferred to a later section of this report 
in which the physical problem will be considered in more detail. 

With the boundary condition expressed in equation (13), equa- 
tion (12) can be written in terms of the initial value of y1: 

2 

(ih) 

2 & -1 J +1 
2 

S
TJL(1.

:!°) s^.a 

where 

G = 

f  \    f /   f \    f 

It will be shown later that y0, and hence G, is a function of angle 
of attack for the cruciform-wing configuration. 

While equation (ik)  does not completely describe the motion of the 
four vortices, it yields some interesting information regarding the types 
of motion to be expected. For instance, if the relative path described 
by equation (l^) is a closed curve it can be concluded that the motion 
is periodic. The relative paths of the vortices are plotted in 
figure 1 for various values of G, and it is found that the motion is 
periodic for G less than It- and aperiodic for G greater than It-. 
This is in agreement with the findings of Love (reference 6) who 
showed that the condition for periodic motion is that 

r < 3 + 2 JTT (15) 

where r = -2 at z, „ = 0. That is, r is the ratio of the lateral 
yi   lfZ 

displacements from the plane of symmetry when the four vortices are 
collinear (when one pair is passing through the other). This type of 
vortex motion was first discussed by Helmholtz in connection with 
vortex rings having the same axis and circulations in the same 
direction (reference 11): 

"The foremost widens and travels more slowly, the pursuer 
shrinks and travels faster, till finally, if their veloc- 
ities are not too different, it overtakes the first and 
penetrates it. Then the same game goes on in the opposite 
order, so that the rings pass through each other alternately." 
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Complete motions in transverse plane.- Since the relative paths of 
the vortices on either side of the plane of symmetry are given by equa- 
tion (l^), establishing the actual path of any one of the four vortices 
"will completely determine the motion of the system in the y,z plane. 
Therefore, the actual path of vortex 1 will now be calculated. 

The determination of any of the individual vortex paths requires 
the solution of the following equation: 

zn = yfe*-ys^—y>> 
where vn and wn are the velocity 
components of the nth vortex in the 
y and z directions, respectively. 
If equation (16) is evaluated for 
one vortex, say vortex 1, then the 
path of vortex 2 can be obtained 
from equations (7), (10), and (ik), 
and the paths of vortices 3 and it- 
are found by symmetry. It will be 
seen that this is considerably 
easier than solving four equations 
of the type given by equation (l6). 
By adding the contributions of all 
the other vortices to the velocity 
components of vortex 1, one finds 
(see sketch): 

c- *4 

4wi 

/< 

c #^: 

X,<!> 
/ 

</. 

/ 

/ 

vy 

y± 

L^02 
\ 

\ 

v 
\ 

\ 

'1.2 

\ 

f-yv 

-2yx 

r 
2Ttr2 

cos 02 + 
2jtr, 

cos 0, 

and 

Vi   = 
2irr4      2jtr2 

r r 
sin 02   -   sin 03 

2jtr0 

(17) 

Further,  from the geometry of the system,   it is seen that 

cos  6»2 

sin 02 

and 

'1,2 COS   63 Zl,2 

%22 + (f - 2yi)2'     r3 Zl^2
2 + f2 

f " 2yi 

L3 

sin 03 

;1>2
2 + (f -2yi)

2'      r£ 

r4 = 2yi 

z       2 + f2 zl, 2    + 1 
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The velocity components vx  and v1    can now be expressed in the following 
form: 

2rzi 
vi = 

yi(f-yi) 

[z1)S
2 + (f-2Yl)

s][z1)2
2 + f2] 

JL f   (f2 + si,^)2- 8fyi2 (f - yi) 
Wl      " 4*  ty^f2 + z1>s

2)[zlfZ
s +  (f - 2yJ2] 

(18) 

If equations (1*0 and (l8) are used to express vx  and wx as functions 
of yx, then equation (l6) can be integrated directly to give the path 
of vortex 1. After algebraic manipulation, equation (l6) thus becomes 

zl-zo = 

f4+2f3y1(G-l)-Gf2yi2(G+2)+2G2fy1
3-G2y1 

dyi 

y0  (f^-Gfyi+Gy!2) J[-(G+lOy^+f (G+l|)y1-f
2][Gyi

2-Gfy1+f
2] 
(19) 

where z0 is the initial value of zx. 

If now the numerator of the integrand is divided by the rational 
factor in the denominator, and the substitution 

VX =  ^ + I 

is made,  then the quantity (zx - z0)  can be expressed as the sum of four 
integrals 

Z T-Z l'^O 

y -f- „12 
r\£dT[ 

yl"I 

Joia+k) L   y -Z   v^R^KÖW)" 
- Q2G Ja. 

O   2 y -l   ^(Ra-tja)(Qa-Ml2) 
O   2 

,4    Ji~i dTj 2f3 .1   2 H clT] 

G Jv J_    (Q2
+T1

2) ^(R
2

-T1
2
)(Q

2
+T1

2
) G   ^ J_ (Q2

+T1
2)7(R2-T12)(Q2+T12)J 

O   2 
(20) 

f% 2 x    u 2 
where    R    = —:—— and Q,    = 

MG+4) 

f2(4-G) 

l4G 
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Equation (20)   is now in a convenient form if    G    is less than k      This 
corresponds to the range for periodic motion.    On the other hand,  if    G 
is greater than k (aperiodic),  a new constant 

is introduced so that equation (20) becomes 

zi-zo - 
^G(GH4) 

v - £ -/1    2 

-Gl 
T]gdT) 

yi-I 

y 
f     <S/(R

2
-T,

2
)(T]

2
-Q;

2
) 

+ Q2G dT] 

O   2 
/T^pH^-a2) + 

c1 'O   2 

dT) 2r 1   2 
,T]   dT] 

y0-|    dla-Q2)A/(He-T,a)(T,*-Q*)       G     ;_f  (r]M2)y(R2-T)2K?~-Q2) 
"'OS 

(21) 

"The third possibility is that    G    is equal to k,  in which case 
Q    = Qs = 0. Equations  (20)  and (21)   then both reduce to 

zi~zo = 
1 

yi- 
n IT] 

y   -l 
/l   2 

dT] 

'O    2 
f    VR

2
-^

2
      16^2^    f T]VR

2
-T]

2
      8^/2%. _f T]

2
-S/R23^2 

^l 2 
dT] 

'O g y0- 

(22) 

The three cases corresponding to equations (20), (21), and (22) will 
be treated separately since the integrations will be somewhat different 
for each. 

For cases where the vortex motion is periodic, that is, when G is 
less than k,  the determination of the vortex paths requires the evalua- 
tion of the integrals of equation (20). It is seen that the fourth 
integral of this equation is elementary while 'the first three are 
elliptic. Thus, while the fourth integral can be evaluated simply by 

noting that TJ dT] = 1 ä(r\s),  the other integrals require the use of the 

elliptic transformations2 

"These and subsequent transformations were obtained from a comprehensive 
table of elliptic integrals prepared by Paul Byrd, Ames Laboratory, 
NACA. 
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/ \2 

sn2 Ul = sin2 q>! = 

R2- 
^- 

f 
; 

R2 

uo = sin
2 

^0 = 

R2- (v f ; 

R2 

k2 = - 
I 

Rs Gf 
16 *2 + Q2 

(23) 

With these transformations the integrals can be evaluated and the-results 
expressed in terms of elliptic integrals of the first and second kinds. 
The final solution of equation (20), after collection of terms and eval- 
uation of the constants, is given in nondimensional form by the expres- 
sion 

;i _  ^G 

16-G2 
, E(k, <Po)-E(k, <Pi) 

G2 f sin <Pi cos <Pi  sin 9o cos 9o 

8fi4—G) Wi-k2 sin2 9i  Vl-k2 sin2 <P, 

1  _—  /   sin cpi        sin % 
- VG(G+4) (        — —= 

-/l-k2sin2 q> 
Y       (») 

O 

where k = - and it is recalled that z  is equal to y0 due to the 

^5° configuration of the initial locations of the vortices.  (Note that 
9o lies in the second quadrant and that  <Pi increases positively from 
9o»)   Thus, for the case where the motion is periodic, the motion in 
the y,z plane is completely described by equations (7), (10), (lU) 
and (2*0. 

If the motion in the y,z plane is not periodic, that is, if G 
is greater than 4, then the motion of vortex 1 is described by equa- 
tion (21). Here again the first three integrals of this equation are 
elliptic, but now the required transformations are 

sn   ua = sin^ cpx = *..    .. „.    R2-U-l 
R2-Q2 

2 

en- u0 = sin2 cp0 =  ^_./ 

a     R2-Q2     16 k   -n^-55 (25) 
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It should be noted that for this case (aperiodic motion) when r\£    is 
less than Q2, all four integrals become imaginary. That is, zx    is 
imaginary if v   1 ,  n 

^--  <- (26) 
f   2 I  f ■ 

This condition defines the asymptotes of the vortex paths for the 
aperiodic motion. This can be seen from the relative paths shown in 
figure 1. 

If the integrals of equation (21) are now evaluated for this case, 
the resulting expression for the aperiodic path of vortex 1 is 

'A = _ G' 

G2-l6 
E(k,q>o)- E(k,9i) + F(k,cp0)   - F(k,cpx)    + 

2(G-4) 
( tan cp0   -y/l-k2 sin2 cp0 - tan <Pi   7l-k2 sin2 <px   j 

1 £+k   ( \     y0 

2 /~G~   Itan ^o " tan (Pij+ ~ 
(27) 

where k =. -. The motion is now completely defined by equations (7), 

(10), (110, and (27). 

For the special case when G is equal to k,  all the integrals are 
elementary and can readily be evaluated by making use of the trigono- 
metric substitutions 

i ?        yo"5 
cos <Pi =  -j cos <Pn =  

R R 
(28) 

The final solution of equation (22) is then 

zi 1  f.     m > ^   -1   /sin 9i        sin <PC -1 « - r    sin 9,  - sin cp0 ) + ■-   ( -—s-= ö-
2
-   1 + 

f 4 \ 1 V     2   Vcos2 9i      cos2 cp0 

1 lo    cos 9o(l+ sin cp-J  . i_ / sin (Pi  _ sin <P0 

2 cos cp-L (l+ sin % )       J2   \ cos <PX       cos cp0 

K-TT) (29) 
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Actually, it can be shown that this result is obtainable from either 
equation (2*0 or (27) by taking the limit as G approaches h.    It is 
interesting to note that G can assume only positive values and must 
lie between 2 and infinity as can be seen from its definition given 
with equation (ik). Thus, the vortex paths in the y,z plane have been 
obtained for the entire range of the parameter G. Figure 2 shows the 
paths of vortices 1 and 2 for several values of G. The dashed lines 
connect corresponding positions of the two vortices at successive time 
intervals. 

Complete motions in three dimensions.- In order to complete the 
three-dimensional picture of the four vortex filaments trailing behind 
the cruciform wings, a relationship must be obtained between the points 
of the paths in the y,z plane and the distance the wing has traveled 
in the stream direction. This can be done by the relationship 

ay, 
d = ut = u /at = u dya /dt 

=u 
^yi 

(30) 

Equations (lk)  and (l8) can again be used to express vx as a function 
of yx so that equation (30) can be integrated. The integral thus 
becomes 

d = - 8itGfU 

y0 V05 

^-Gy^f-yJ 

r \r      ./Gy1(f-y1)-(2y1-f)
2 

Again using the substitution 

yi (f-yi) 
1 

[f2-Gy1(f-y1)l' 
• toi 

(3D 

yi = n + a 

equation (31) can be simplified into three somewhat different forms, 
one for each of the three regimes of the parameter G. 

For the case when G is less than k  (periodic motion), equa- 
tion (31) can be written as 

d = - 
8nfU ?" J dt] 

r JoiG + k) /-I      (QV) J^-vTHtf+f) 
(32) 

where 

R2 = 
f2G 

k(G + h) 
and Q    = 

f2(^ G) 

kG 
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« 
For the aperiodic case (G greater than k),  equation (31) becomes 

yi-I     ( T ~ ^T ^ 
ryG(G+^)^ f (T1

2
-Q
2
)^(R

2
-I1
2
)(TIM

2
) 

^02. 

where 

? . _ Q«. Sail 
kG            ■               ■ 

vhile for the special case when G is equal to k,  equations (32) 
and (33) both reduce to 

a.™   ?*■*> (T-0*>             , 
r^G(G+4)X_f   TI

3
V/R

2
-TI

2 

°  2 

2  -2 
since here Q = Q = 0. 

The three expressions for the distance behind the wing can now be 
solved by use of the proper elliptic transformations. For G less 
than k,  the result is 

d 
f 

128 TtUf  

r \    G(I6-G2) 
E(k,cp0)-E(k,91) 

G L 
F(k,cp0)-5,(k,cPi) 

G     /sin cpQ cos 90    _ sin 9i cos 9i 

k~G \ Vl-k2 sin2 90      </l-k2 sin2 9i 

where 

(35) 

k2 = —SL = Sf,  sin2 9i - 
R2+Q2      l6 

R2- yrz 
R* 

-,  and sin2 cp0 -  ±°-£ 
R* 

For G greater than ^, the resulting expression is 
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d     «Uf    I     32 
f        r      U2-l6 

EC^^J-ECk,^) 

G-k 
f tan 90  \/l-k

2 sin2 cpQ - tan q^  Vl-k2 sin2 cp1 (36) 

where ,2 

.-sa.M ....~.-E:IH) _...*-M k^ =  — = —,  sin* q>! = a -g      *  and sln    ^ -      ~ -„ 
R G2 R2-Q2 R2-Q2 

For    G    equal to h, 

d _ «Uf 
f      r 

sin_^_ _ Bin^ + 2og  (l^incpQC-cos 9o)  + 1 {3±n%_sin ^ 

_cos2 90      cos2 q^ (l+sin q>0)(-cos q>x)       2 

where / ^ 
yi~ s v        2  / 2 

cos * cpx =  and cos     q>n = 

(37) 
2 

U - §) 
R2 ° R2 

With the aid of equations (35), (36), and (37), the positions of 
the four rolled-up vortices are completely described3 for all distances 
behind the cruciform wings. Thus, for G less than k,  equations (7), 
(10), (ik), {2h),  and (35) completely determine the motion. The other 
cases are given by the corresponding equations. 

APPLICATION TO CRUCIFORM TRIANGULAR WING AT 45° BANK 

Determination of Initial Vortex Positions 
and Vortex Strengths 

The equations thus far developed give the motions of the rolled-up 
vortices in terms of their initial positions. In order to relate these 
motions to physical cases involving a given cruciform wing at a 
specified angle of attack, the initial positions of the four vortices 
must be determined as a function of the lift coefficient. This amounts 

3 "   '  —— 
The evaluation of the circulation Y   will be discussed in the next 
section. 
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to the determination of the parameter G in terms of the physical 
quantities such as lift coefficient and aspect ratio. Therefore, this 
section will be concerned with the initial locations of the four vortices 
for a given cruciform wing (banked ^5°) at a given flight condition. 

Since the vortices trailing behind the cruciform wing actually leave 
the trailing edges as two flat vortex sheets, the initial locations of 
the four rolled-up vortices are Bomewhat fictitious. However, if each 
wing of the cruciform is considered as a plane wing in sideslip, the 
locations of the rolled-up vortices from each wing can be calculated 
from the span loading curve. Such a calculation, then, can be considered 
as yielding the positions of the four vortices of the cruciform before 
any interaction has taken place between the vortices of the two wings, 
namely, immediately behind the trailing edges. Hence, in order to calcu- 
late the initial positions of the four vortices, the span loadings of the 
separate wings must'be determined. 

In reference 9, it was shown that the load distribution on each 
wing of a pointed low-aspect-ratio cruciform wing with no body is given 
by the expression 

f ) = V?L_LS- (38) r^i 
where Ap is the difference in pressure between corresponding points 
on the upper and lower surfaces of the individual wing. 

Equation (38) is not valid for angles of sideslip greater than —. 
dx 

The span loading is obtained by integrating this load distribution in 
the chordwise direction; that is 

=,c - f*' (*■ I ax ■v fL.E. 1 

so      /,      . \ 
ds/dx Wl §£ + ß Z ) 

^*B'  dx        (39) 

ds/dx   */   s2 
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Equation (39) can be separated into two integrals, and since for trian- 
gular wings ds/dx is a constant, the resulting span loading is 

or, since ds/dx = — for triangular wings, 

Jl-yZ/B^) (in) 

In the case of the unyawed plane wing, it is clear from symmetry- 
considerations that, if the vortex sheet is to roll up into two 
vortices, all the vorticity on one side of the plane of symmetry must 
eventually become rolled up into one vortex. This leads to the conclu- 
sion that each rolled-up vortex must be of strength equal to the maximum 
circulation which in this case is the circulation in the plane of sym- 
metry. A corollary of this conclusion is that each rolled-up vortex 
contains only vortices of the same sense. This seems to be in accord- 
ance with existing knowledge of the behavior of vortex sheets as well as 
with existing theories of the cumulation of vorticity as applied to 
turbulence. For the wing in sideslip, whereas there is no symmetry, the 
wing can again be considered as composed of two segments, each having 
vorticity in only one direction and hence each producing one rolled-up 
vortex. The dividing line between two such segments is at the spanwise 
station of maximum circulation so that such a division leads to the 
conclusion that each rolled-up vortex must have a strength equal to the 
maximum circulation. Thus, the vortex strength is given by 

r - § (czc)max (te) 

Further, the distance between the vortices is given by the fact that the 
lift impulse must always be that of the wing itself. Thus, 

From equation (1*3) it can be seen that the distance 2s'  can be 
represented on the span loading curve as shown in the sketch, where the 
area under the rectangle is equal to the area under the curve. 
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CJ c 

j< 

(clc)max 

a., - a-         >, l 

"*      vm —*" 

a       *" 

s° 
0    p.. 

+s0 

As seen from the sketch, the actual location of each of the vortices 
still requires the determination of the distances ax and a21 It has 
already "been argued that all the vorticity on one side of the maximum 
circulation must eventually be contained in one rolled-up vortex. Thus 
the two areas can be equated on either side of the maximum; that is, 

ym 
(ai + ym)(czc) max czc dy 

(a2 - ym)(czc) 
+Sr 

max ■ ic dy (J*) 

ym 

(Note that ym is readily calculated by successive approximations.)* 

To apply the above information to the cruciform wing at ^5° bank, 
one merely needs to note that for this case 

a' = ß = a sin k^>°  = -^= 
v 2 

and that the initial position of vortex number 1 in the banked coordi 
nate system is now given by y0 = It is further pointed out that 

f = yi + 12. = 
al + a2 
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Since the lift of the cruciform wing can now be expressed as 

L = J~2  pUr (ai + a2) = | pU2 CL S (1+5) 

and the wing area S is equal to 4s0
s/A, it is seen that the circula- 

tion T is given by 

U  ai + a.£  \ A 

Sufficient information is now at hand to determine the initial 
positions of the four vortices as a function of the angle of attack for 
a particular aspect ratio or, more generally, as a function of a/A. 
However, since the above span loadings were obtained from low-aspect- 
ratio theory, for which CL = — Aa, the results can be considered as a 

function of the parameter CL/AA
2
. It can be shown that this will make 

the results more general in that they will now apply with the accuracy 
of linearized theory rather than of low-aspect-ratio theory. This may be 
seen from the fact that the loadings in linearized theory (see, e.g., 
reference 12) for triangular wings are simply those of low-aspect-ratio 
theory multiplied by a constant which depends upon the aspect ratio and 
the Mach number. 

The theoretical initial positions of vortex 1 have been calculated 
and are plotted against CL/rtA

2 in figure 3. From these initial posi- 
tions, the values of G were calculated (equation (l4)), and are 
plotted in figure k.    The limiting angle of sideslip of equations (38) 
and (4l) has been exceeded somewhat, as indicated by the dashed portion 
of the curve in figure 3» in order to permit some interesting observa- 
tions regarding the indicated trends. The constants appearing in the 
equations for the vortex paths have now been completely determined and 
the three-dimensional paths of the four vortices can be calculated for 
any lift coefficient and aspect ratio. An illustration of such paths 
for a typical case is presented in figure 5. 

If one recalls the types of motion associated with the various 
regimes of G, figure 3 takes on added significance. The passing from 
periodic motion to aperiodic motion simply indicates the inward move- 
ment of the initial position of the upper two vortices with angle of 
attack until their velocity in the z direction is so great that once 
they pass through the lower vortices, the latter never catch up to 
complete the cycle. If this inward movement were to continue as the 
angle of attack increases (as shown in fig. 3) then at CL/itA

2 = 0.244 
the two upper vortices would have coalesced, leaving only the two lower 
vortices which would then travel parallel to the z axis as in the case 
of a plane wing. 
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Leapfrog Distance 

As an indication of the practical importance of the motion of the 
four rolled-up vortices in the calculation of downwash, a distance 
behind the wing which is characteristic of the motion will be calculated. 
This distance is taken as the distance at which the four vortices have 
become collinear, that is, the distance behind |he .wing at which the 
upper two vortices are just passing through the 'lower two. This will be 
referred to as the leapfrog distance dL measured from the wing trailing 
edges. 

The leapfrog distance can be calculated directly from equation (31) 
by taking the upper limit of integration to be the value of yx   in the 
collinear configuration. This value of jx    is obtained from equa- 
tion (Ik)  by setting zx 2 equal to zero. Solution of this equation 
then gives the limit of integration yx    as a function of G only and • 
therefore of CL/«A

2. The definite integral of equation (31) has been 
evaluated by the methods discussed previously for the entire range of G 
and the resulting leapfrog distances are plotted (in terms of chord 
lengths) against CL/otA

2 in figure 6. For purposes of comparison, as 
well as to provide a measure of the usefulness of the assumption that 
the four vortices are fully rolled up at the trailing edge, the distance 
for the vortex sheets to roll up (as calculated by Kaden, reference 1) is 
also shown in this figure. Since the distance to roll up as shown in 
figure 6 is that for a plane wing, it should be taken as an indication 
of the average distance for the four vortex sheets to roll up. Actually, 
because of the asymmetric span loading, the lower vortices will roll up 
somewhat faster, while those from the upper wing panels will roll up 
more slowly. 

The outstanding point to be noted from figure 6 is that the phenom- 
enon of leapfrogging can occur within a few chord lengths at reasonable • 
lift coefficients for low-aspect-ratio triangular cruciform wings. 
The calculations are expected to represent the physical phenomenon most 
accurately when the leapfrog distance is considerably greater than the 
distance for the vortex sheets to roll up. The curves presented in 
figure 6 have been terminated at a value of CL/KA

2
 of 0.176, since 

above that value (calculated from low-aspect-ratio theory) the upper 
leading edges of the cruciform wing become trailing edges and the span 
load distributions are no longer given by equation (kl). 

Rolling Up of the Vortex Sheets 

As was mentioned at the outset of the analysis, the assumption that 
the wings of the cruciform act independently of one another is not 
strictly applicable to the present problem because once the. bound 
vortices of the wings become free (i.e., immediately behind the trailing 
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edge) the two vortex sheets influence one another in their subsequent 
behavior. Thus, while the foregoing analysis has treated in some detail 
the complete motions of the fully rolled-up vortices, it has not 
considered the mutual effects of the vortex sheets during the rolling— 
up process itself. Although a complete knowledge of the rolling-up 
process could he gained only by a detailed numerical analysis, some 
important questions regarding the over-all interaction effects can be 
answered by examining the nature of the vortex sheets in their initial 
cruciform configuration. Illustrated schematically in the sketch is the 

initial vortex config- 
uration, showing the 
span loading or circu- 
lation distribution, 
which is the same on 
each wing, and the 

' resulting vorticity with 
directions of rotation 
indicated by the arrows. 
In view of the arguments 
presented earlier, it is 
clear from the sketch 

y   that all the vortices 
contained in the dis- 
tance AO will roll up 
into a single vortex, 
and that all those in 
BC will roll up into 
another single vortex 
with opposite direction 
of rotation. Further- 
more, the strength of 
the latter vortex must 
clearly be equal to the 
maximum circulation 
r max" 

On the other hand, it is not clear just what will become of the 
vorticity contained in OB. If the wings did, in fact, act independ- 
ently, then OB would certainly be combined with AO to form a single 
vortex of strength IV*. However, the presence of a plane of symmetry 
at y = 0 requires that AO and OB now be considered as separate 
vortex sheets since the vorticity at 0 vanishes due to symmetry. 
In fact, closer examination of the portion of the sheets near 0 reveals 
that, due to the directions of rotation, the broken-line sheet AOB' 
must move away from the sheet A'OB, thus severing AB and A'B' at 0. 
It is doubtful, then, that the vorticity originally contained in 
OB and OB' will ever become entrained as a part of the upper two 
vortices. It will, in fact, later be shown, from the experiments con- 
ducted for this report, that this amount of vorticity actually forms 
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a separate sheet which is not identified as part of any of the four 
vortices treated thus far. 

The foregoing observations suggest a possible improvement on the 
four-vortexanalysis already carried out; that is, the strengths and 
initial positions of vortices 1 and k  could be modified to take into 
account the fact that the vorticity in OB and OB' actually is not 
contained in vortices 1 and k.    The amount of vorticity in OB 
hereafter referred to as Tc) and the resulting modification of I\ 
I lef    Lcalculated from the span load distribution, as shown in the 
sketch. The strengths of the three vortices shown are simply given by 

*- y 

and 

ri»2(Clc)0;raB,u(cic) 
max 

rc = Vi-i .a r(c2c)max-(c2c)0 (vn 

The initial positions of the vortices are again calculated by equating 
the lift impulse before and after rolling up, but now rx    is considered 
to contain only the vorticity arising from its side of the wing; that is, 

al' (c^cJo = P      c2c dy 

— So     ym 
ac (czc)0 + (ym-ac)(c2c)max = T Cjc dy 

+s0 
(a2-ym) (cZc)max = /   cjc dy 

^m 

(k8) 
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Note that a2 is unchanged by the introduction of Tc. 

With the aid of the foregoing sketch, one can again express the 
cruciform-wing lift in terms of the initial vortex positions 

L=V2 pU ri (a!1 + ac) + 
r
2 (a2 - ac)  = i Pu

2cLs (^9) 

and conclude that 

/2"sn
2 

U [7(ai'   + ac)   + a2 — ac] 

(50) 

where 

z 

<T 3 

C 

CT 

D 

the strengths 1^ to T2 

The original four-vortex prob- 
lem has actually now "been replaced 
by the six-vortex problem illus- 
trated in the sketch. However, due 
to the relatively small strength of 
Fc, as well as to the close prox- 
imity of the two opposing vortices 
Tc, the influence of these addi- 

y  tional vortices on the motions of 
the other four is expected to be 
small.  An iterative approach to 
the exact solution can be obtained 
by neglecting this influence once 
the initial position and strength 

!  of r±    have been modified to allow 
for rc.  Thus the problem is again 
simplified to that of the motion of 
four vortices, but now they have 
unequal strengths.  (The ratio of 

is plotted against C^/itA2 in fig. 7-) 

"D 

This fact alone complicates the mathematics to the point that the 
integrations can no longer be carried out except by numerical methods. 
Therefore, the complete motions Will not be determined, but the leapfrog 
distance will be recalculated in order to illustrate the effect of the 
new assumptions on the results. The leapfrog distance is readily 
checked experimentally^ as will be shown in the experimental section. 
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Modified Four-Vortex Calculation 

The equations for the relative motion of the four vortices can 
again he set up by the use of the general equations (3) and (k)  with a 
new statement of the center-of-gravity rule in which the vortex 
strengths are no longer taken to he equal. That is, 

yc.g. - ^ft- ^F + VfZ =  e- constant        (51) 

If it is noted that in the initial configuration 

zi )2= 71 + y2; yi = y0; Js = e (I + 7) - ry0     (52) 

then equations (3) and (k)   can he used as in the original analysis, 
resulting in the following expression (in dimensionless form) for the 
relative vortex paths: 

(^- 

where 

2  K — (1-7)+1+7 (SK^MG-OWT 
■yi v /       yi \ - 

1 -K[ T )  (1+7-7 T   )7 t" 
(53) 

K = 

ax' + a2 J   [1 + j )7+7 

The velocity vx     is recalculated in the same manner as before, with 
the result 
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2r 
Vj, = 

 2 
«e C^)x 

W-(H yi 

e 
1-7) +1+7 ]}{(^ - 1  1+7 

n? 

hv 
If this expression is now used in equation (30) to determine the 

downstream distance d, the resulting (dimensionless) form of the 
integral is 

jtUe 

2r, X 

r 'To 
e 

tef0"-fr(-) +ltJ}fvy+[(£- - own 
(¥) K#-M*J (55) 

It is readily seen, without substituting the expression for zx e/e 
as given by equation (53) > that analytical evaluation of the integral 
of equation (55) would be extremely difficult. This integration was 
carried out numerically with the definite upper limit as given by the 
collinear configuration of the four vortices (i.e., zx 2 = 0) and the 
resulting values of the leapfrog distance d^ are plotted on 
figure 6. It is noted that the resulting curve is higher than that 
calculated in the original analysis. This is due primarily to the 
smaller strengths of the upper two vortices and to the consequently 
longer time required for them to pass through the lower two because 
of reduced induced velocities of one upon the other. 

WATER-TANK EXPERIMENTS 

The motions of the vortex sheets behind a triangular cruciform 
wing of aspect ratio 2 were observed experimentally by means of a 
water tank (fig. 8). The model was mounted on a vertical track which 
was driven at uniform speed into the tank, while photographs of the 
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water surface were recorded by a motion picture camera. The traces of 
the vortex sheets were made visible by applying fine aluminum powder to 
the trailing edges of the model. The model had a span of 8 inches and 
was made of 0.050-inch sheet metal. 

In general, the purpose of the water-tank studies was simply to 
illustrate the motions analyzed in the earlier portions of this report. 
(A typical series of photographs enlarged from the moving pictures is 
presented in  fig. 9») However, it was a simple matter to obtain 
experimental values of the leapfrog distance by means of a tape which 
moved with the model track and recorded on the movie film the distance 
traveled by the wing. The results of such experiments are presented in 
figure 6 for several angles of attack and it is observed that the agree- 
ment with the modified four-vortex calculation is remarkably good. 

The formation of a separate vortex sheet arising from the center 
portion of the cruciform wing, as discussed in a previous section, can 
be seen in the photographs of figure 9- This is the phenomenon that 
has been taken into account in the modified theory. 

It is interesting to note (fig.9) that the two lower vortices 
extend downstream in nearly the free-stream direction as indicated by 
their positions relative to the wing-tip markers. This was also true 
for the calculated paths of figure 5. 

An important feature of the actual flow field as, distinguished from 
the simplified model used for the analysis is the persistence of the 
vortex sheets between the rolled-up vortices as seen in figure 9« 
Because of this fact, the theoretical paths of the vortices are not 
expected to be accurate at distances behind the wing greater than d-^, 
since vortices 1 and k will then begin to become entrained in the outer 
windings of the sheet that constitutes vortices 2 and 3» However, the 
magnitude of this effect will depend upon the' rate of rolling-up of 
the vortex sheets and it would be expected to be most serious at the 
lower lift coefficients (or higher aspect ratios) where the motions 
being considered are not of practical concern. 

CONCLUDING REMARKS 

A detailed analysis has been made of the motions of the four fully 
rolled-up vortices trailing behind a cruciform wing which is banked 45°• 
Equations have been developed describing the paths of the four vortices 
in three dimensions, and calculations have been made of the distance 
behind the wing at which the upper two vortices leapfrog through the 
lower two. The latter calculations were confined to wings of triangular 
plan form. The simplified analysis presented in the early portions of 
the report has been modified to account for the fact that all the 
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vorticity shed from the cruciform wing is jaot actually contained in the 
four rolled-up vortices. 

It vas found that the leapfrog distance decreased with increasing 
lift coefficient and increased with increasing aspect ratio. For angles 
of attack up to a certain critical value of CL/nA

2, the vortex motion is 
periodic with downstream distance, while above the critical value the 
motion is aperiodic. 

From the fact that the leapfrog phenomenon can occur within two 
chord lengths of the wing trailing edges, it is clear that downwash 
calculations even at distances less than one chord length behind 
low-aspect-ratio cruciform wings must take into account the vortex 
motions considered in this report. Once the positions of the vortices 
are known, there are methods available for approximating the downwash, 
and corrections can be made for the viscous vortex cores by assuming 
that they rotate as solid bodies. 

For angles of bank other than V?°, it is doubtful, due to the lack 
of symmetry, that calculations of the type presented here could be made 
by other than numerical procedures. 

Ames Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Moffett Field, Calif., Oct. 5, 1951. 
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Figure I.-Relative   vortex  paths    in   the   yz   plane. 
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Figure   7.-   Variation   of relative   vortex  strengths 
with    lift   coefficient. 
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Figure 8.- Water tank with cruciform-wing model. 
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d/c = 0.11 

d/c = 0.33 

d/c = 0.6l 

d/c = 0.94 

d/c = I.38 

(a) Stations 1 to 6. 

d/c = 1.79  \£AC^ 
A-16567 

Figure 9«- Photographs of wake at various stations behind a triangular 
cruciform wing of aspect ratio 2. CL R» 0.66. 
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d/c = 2.2^ 

d/c = 2.83 

d/c = 3.65 
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d/c = 4.26 

d/c = 4.81 

(b)  Stations 7 to 11. 
A-16568 

Figure 9-- Concluded. 
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